首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   9篇
  国内免费   2篇
测绘学   22篇
大气科学   17篇
地球物理   28篇
地质学   56篇
海洋学   5篇
天文学   20篇
综合类   2篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   10篇
  2017年   12篇
  2016年   16篇
  2015年   4篇
  2014年   19篇
  2013年   10篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   3篇
  1993年   1篇
  1992年   1篇
  1991年   10篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
排序方式: 共有153条查询结果,搜索用时 375 毫秒
41.
Size structure data particularly that of length and weight is very important fisheries management tool, which is also applied to assess the health, habitat and integrity of the rivers. Nepal is tremendously rich in both fisheries and water resource and thus, this analysis is very important. However, this kind of analysis is not common in fisheries studies and hence the size structure information of all the fish in Nepal is wanting. This study simply tries to open the door for such studies with the study of the sucker head Garra gotyla gotyla, a very common fish in Nepal. The field observation was done in nine rivers of the country in all the seasons of the 2003 by using electrofishing gear. The length-weight relationship was found to vary both spatially and temporally among rivers and seasons respectively indicating different conditions in different rivers. The length weight relationship also showed some interesting facts about the seasonal cycle of the species indicating the period of growth and stress in different rivers. The monsoon event was found to be highly influential in this relationship.  相似文献   
42.
43.
Significant systematic errors in the tropical Atlantic Ocean are common in state-of-the-art coupled ocean–atmosphere general circulation models. In this study, a set of ensemble hindcasts from the NCEP coupled forecast system (CFS) is used to examine the initial growth of the coupled model bias. These CFS hindcasts are 9-month integrations starting from perturbed real-time oceanic and atmospheric analyses for 1981–2003. The large number of integrations from a variety of initial states covering all months provides a good opportunity to examine how the model systematic errors grow. The monthly climatologies of ensemble hindcasts from various initial months are compared with both observed and analyzed oceanic and atmospheric datasets. Our analyses show that two error patterns are dominant in the hindcasts. One is the warming of the sea surface temperature (SST) in the southeastern tropical Atlantic Ocean. This error grows faster in boreal summer and fall and peaks in November–December at round 2°C in the open ocean. It is caused by an excessive model surface shortwave radiative flux in this region, especially from boreal summer to fall. The excessive radiative forcing is in turn caused by the CFS inability to reproduce the observed amount of low cloud cover in the southeastern ocean and its seasonal increase. According to a comparison between the seasonal climatologies from the CFS hindcasts and a long-term simulation of the atmospheric model forced with observed SST, the CFS low cloud and radiation errors are inherent to its atmospheric component. On the other hand, the SST error in CFS is a major cause of the model’s southward bias of the intertropical convergence zone (ITCZ) in boreal winter and spring. An analysis of the SST errors of the 6-month ensemble hindcasts by seven coupled models in the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction project shows that this SST error pattern is common in coupled climate hindcasts. The second error pattern is an excessive deepening of the model thermocline depth to the north of the equator from the western coast toward the central ocean. This error grows fastest in boreal summer. It is forced by an overly strong local anticyclonic surface wind stress curl and is in turn related to the weakened northeast trade winds in summer and fall. The thermocline error in the northwest delays the annual shoaling of the equatorial thermocline in the Gulf of Guinea remotely through the equatorial waveguide.  相似文献   
44.
Dissolved oxygen mass balance has been computed for different reaches of River Kali in western Uttar Pradesh (India) to obtain the reaeration coefficient (K2). A total of 270 field data sets have been collected during the period from March 1999 to February 2000. Eleven most popular predictive equations, used for reaeration prediction and utilizing mean stream velocity, bed slope, flow depth, friction velocity and Froude number, have been tested for their applicability in the River Kali using data generated during field survey. The K2 values computed from these predictive equations have been compared with the K2 values observed from dissolved oxygen balance measurements in the field. The performance of predictive equations have been evaluated using error estimation, namely standard error (SE), normal mean error (NME), mean multiplicative error (MME) and correlation statistics. The equations developed by Smoot and by Cadwallader and McDonnell showed comparatively better results. Moreover, a refined predictive equation has been developed using a least‐squares algorithm for the River Kali that minimizes error estimates and improves correlation between observed and computed reaeration coefficients. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
45.
Abstract— A stony meteorite fell at Itawa Bhopji, Rajasthan, India on 2000 May 30. This is the fifth recorded fall in a small area of Rajasthan during the past decade. The meteorite is an ordinary chondrite with light clasts in a dark matrix, consisting of a mixture of equilibrated (mainly type 5) and unequilibrated components. Olivine is Fa24–26 and pyroxene Fs20–22 but, within the unequilibrated components, olivine (Fa5–29) and low calcium pyroxene (Fs5–37) are highly variable. Based on petrographic studies and chemical analyses, it is classified as L(3–5) regolith breccia. Studies of various cosmogenic records, including several gamma‐emitting radionuclides varying in half‐life from 5.6 day 52Mn to 0.73 Ma 26Al, tracks and rare gases have been carried out. The exposure age of the meteorite is estimated from cosmogenic components of rare gases to be 19.6 Ma. The track density varies by a factor of ?3 (from 4 to 12 times 106/cm2) within the meteorite, indicating a preatmospheric body of ?9 cm radius (corresponding to a meteoroid mass of ?11 kg) and small ablation (1.5 to 3.6 cm). Trapped components in various rare gases are high and the solar component is present in the dark portion of the meteorite. Large excess of neutron‐produced 82Kr and 128Xe in both the light and the dark lithology but very low 60Co, indicating low neutron fluxes received by the meteoroid in the interplanetary space, are clear signatures of an additional irradiation on the parent body.  相似文献   
46.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   
47.
Pollen is one of the most durable environmental materials that law enforcement agencies recover as trace evidence from people and objects. Although links between objects and geographic locations are essential during legal investigations, the approach of using pollen and other microbial fingerprints to build these links in an analytical framework is still underutilized. This study uses bees as objects that are mobile and collects environmental traces as a test case to determine the efficacy of predictive geolocation efforts with recovered pollen and species distribution models at both subcontinental and global scales. Results demonstrate promising performance in both the predictive capability of species distribution models and identification of possible location history of bees at both study extents. When coupling pollen with other categories of evidentiary items, this geographic attribution framework can aid law enforcement personnel in refining investigation priorities and optimizing search strategies.  相似文献   
48.
This work documents the diversity in Coupled Model Inter-comparison Project Phase 5 (CMIP5) models in simulating different aspects of sea surface temperature (SST) variability, particularly those associated with the El Niño–Southern Oscillation (ENSO), as well as the impact of low-frequency variations on the ENSO variability and its global teleconnection. The historical simulations (1870–2005) include 10 models with ensemble member ranging from 3 to 10 that are forced with observed atmospheric composition changes reflecting both natural and anthropogenic forcings. It is shown that the majority of the CMIP5 models capture the relative large SST anomaly variance in the tropical central and eastern Pacific, as well as in North Pacific and North Atlantic. The frequency of ENSO is not well captured by almost all models, particularly for the period of 5–6 years. The low-frequency variations in SST caused by external forcings affect the SST variability and also modify the global teleconnection of ENSO. The models reproduce the global averaged SST low-frequency variations, particularly since 1970s. However, majority of the models are unable to correctly simulate the spatial pattern of the observed SST trends. These results suggest that it is still a challenge to reproduce the features of global historical SST variations with the state-of-the-art coupled general circulation model.  相似文献   
49.
Based on a novel design of coupled model simulations where sea surface temperature (SST) variability in the equatorial tropical Pacific was constrained to follow the observed El Niño—Southern Oscillation (ENSO) variability, while rest of the global oceans were free to evolve, the ENSO response in SSTs over the other ocean basins was analyzed. Conceptually the experimental setup was similar to discerning the contribution of ENSO variability to interannual variations in atmospheric anomalies. A unique feature of the analysis was that it was not constrained by a priori assumptions on the nature of the teleconnected response in SSTs. The analysis demonstrated that the time lag between ENSO SST and SSTs in other ocean basins was about 6 months. A signal-to-noise analysis indicated that between 25 and 50 % of monthly mean SST variance over certain ocean basins can be attributed to SST variability over the equatorial tropical Pacific. The experimental setup provides a basis for (a) attribution of SST variability in global oceans to ENSO variability, (b) a method for separating the ENSO influence in SST variations, and (c) understanding the contribution from other external factors responsible for variations in SSTs, for example, changes in atmospheric composition, volcanic aerosols, etc.  相似文献   
50.
The present work reports biological neutralization of chlor-alkali industrial effluent by an alkaliphilic bacterium, isolated from the Gujarat coast, which was identified as Enterococcus faecium strain R-5 on the basis of morphological, biochemical and partial 16S rRNA gene sequencing. The isolate was capable of bringing down the pH of waste water from 12.0 to 7.0 within 3 h in the presence of carbon and nitrogen sources, with simultaneous reduction in total dissolved solutes (TDS) up to 19-22%. This bacterium produced carboxylic acid, as revealed by FT-IR analysis, which facilitated neutralization of alkaline effluent. The presence of unconventional raw materials viz. Madhuca indica flowers or sugar cane bagasse as carbon and nitrogen sources could effectively neutralize alkaline effluent and thus making the bioremediation process economically viable. The time required for neutralization varied with size of inoculum. To the best of our knowledge, this is the first report on biological neutralization of a chlor-alkali industrial effluent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号